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Abstract

The Ensemble Transform Kalman Filter (ETKF) assimilation scheme has recently seen
rapid development and wide application. As a specific implementation of the Ensemble
Kalman Filter (EnKF), the ETKF is computationally more efficient than the conventional
EnKF. However, the current implementation of the ETKF still has some limitations when5

the observation operator is strongly nonlinear. One problem is that the nonlinear op-
erator and its tangent-linear operator are iteratively calculated in the minimization of
a nonlinear objective function similar to 4DVAR, which may be computationally expen-
sive. Another problem is that it uses the tangent-linear approximation of the observation
operator to estimate the multiplicative inflation factor of the forecast errors, which may10

not be sufficiently accurate.
This study seeks a way to avoid these problems. First, we apply the second-order

Taylor approximation of the nonlinear observation operator to avoid iteratively calculat-
ing the operator and its tangent-linear operator. The related computational cost is also
discussed. Second, we propose a scheme to estimate the inflation factor when the15

observation operator is strongly nonlinear. Experimentation with the Lorenz-96 model
shows that using the second-order Taylor approximation of the nonlinear observation
operator leads to a reduction of the analysis error compared with the traditional lin-
ear approximation. Similarly, the proposed inflation scheme leads to a reduction of the
analysis error compared with the procedure using the traditional inflation scheme.20

1 Introduction

The spatial and temporal distribution of observations is continuously changing with the
improvement of numerical models and observation techniques. Sounding data, remote
sensing observations, radiance data and other indirect information bring both opportu-
nities and challenges in data assimilation. How to assimilate these indirect observations25

is an important research topic in data assimilation (Reichle, 2008).
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The observation operators for indirect observations are often nonlinear. For example,
radiative transfer codes (e.g., RTTOV, CRTM, Saunders et al., 1999; Han et al., 2006)
can be treated as observation operators by mapping air temperature and moisture to
the microwave radio brightness temperature (McNally, 2009). Because the relationship
of these observations with modelled variables may be strongly nonlinear (Liou, 2002),5

and because the observation errors may be spatially correlated (Miyoshi et al., 2013),
data assimilation schemes have to be appropriately designed to address such indirect
observations.

Most data assimilation methods are fundamentally based on linear theory but have
different responses to departures from linearity (Lawson and Hansen, 2004). Con-10

ceptually, variational data assimilation schemes (VAR, e.g., Parrish and Derber, 1992;
Courtier et al., 1994; Lorenc, 2003) can assimilate data with nonlinear observation op-
erators and spatially correlated observation errors. However, a drawback of VAR is that
it has to calculate the adjoint of a dynamical model, which is not an easy task in prac-
tice. Moreover, VAR does not give a direct estimate of the background error covariance15

matrix, which is crucial for the performance of any data assimilation scheme.
The Ensemble Kalman Filter (EnKF) scheme has a strategy to optimize forecast er-

ror statistics without using the adjoint of the dynamical model (e.g., Evensen, 1994a,
1994b; Burgess et al., 1998; Anderson and Anderson, 1999; Wang and Bishop, 2003;
Wu et al., 2013). It is also conceptually applicable to data assimilation with nonlinear20

observation operators. However, it has been demonstrated that when the observation
operator is strongly nonlinear, using the linear approximation of the observation oper-
ator to derive the error covariance evolution equation can result in an oversimplified
closure and dubious performance of the EnKF (e.g., Miller et al., 1994; Evensen, 1997;
Yang et al., 2012).25

The Ensemble Transform Kalman Filter (ETKF) was first introduced in atmospheric
assimilation by Bishop and Toth (1999) and Bishop et al. (2001). Wang and Bishop
(2003) transformed the forecast perturbations into analysis perturbations by multiplying
a transformation matrix. They also proposed an efficient way to construct the transform
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matrix through eigenvector decomposition of a matrix with the ensemble size. Hunt
et al. (2007) extended the ETKF method to address a general nonlinear observation
operator using the cost function, similar to Lorenc (2003). However, Hunt et al. (2007)
minimized the weight vector of the ensemble analysis state instead of the analysis
state, as in Lorenc (2003). In addition to the reduction of the computational cost com-5

pared with EnKF, another advantage of the ETKF proposed by Hunt et al. (2007) is
that it can assimilate observations with strongly nonlinear observation operators (Chen
et al., 2009) and with spatially correlated observation errors (Stewart et al., 2013), sim-
ilar to VAR.

However, there are still problems associated with the ETKF when the observation10

operator is strongly nonlinear. First, the current ETKF is based on the minimization
of a cost function similar to that in VAR for nonlinear observation operators (Hunt
et al., 2007). The direct calculation for the minima may be computationally expensive
because the nonlinear operators and their tangent-linear operators have to be itera-
tively calculated. Using the linear approximation of the nonlinear observation operators15

(e.g. Hunt et al., 2007) can effectively reduce the computational burden, but at the cost
of increasing analysis error. Second, tangent-linear approximation of the observation
operator is used for the forecast error inflation in the ETKF (e.g., Li et al., 2009). If the
observation operators are strongly nonlinear, the inflation factors and hence the fore-
cast error covariance matrices may be estimated erroneously in this way, leading to an20

eventual increase in the analysis error.
In this study, we propose two alternative approaches to improving assimilation quality

when the observation operator is strongly nonlinear. First, in an effort to reduce compu-
tational cost without significantly reducing estimation quality, we use the second-order
Taylor expansion of the observation operator to estimate both the inflation factors and25

the analysis states. Second, for the case where the inflation factor is constant in space,
we propose a new forecast error inflation method that can address a general nonlinear
observation operator without using the tangent-linear operator.
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The potential use of the second-order information has been noted by some authors.
For example, Hunt et al. (2007) noted that the second-order derivatives of the objec-
tive function might be used to estimate the covariance of analysis weight, which is
an important step in ETKF with a nonlinear observation operator. Moreover, Le Dimet
et al. (2002) and Daescu and Navon (2007) noted that the second-order information in5

nonlinear variational data assimilation is important to the issue of solution uniqueness.
In the conventional ETKF scheme, the linear approximation of nonlinear observa-

tion operators is used for the purpose of reducing the computational cost compared
with conventional methods of searching the minima of nonlinear cost functions (Hunt
et al., 2007). This study also aims to investigate the changes of analysis errors when10

a nonlinear observation operator is substituted by its first-order and second-order Tay-
lor approximations. We focus on the formulation of the forecast error inflation method
in the case of a nonlinear observation operator and on improved accuracy with the
second-order vs. the first-order approximation and the linear approximation. Further
studies on the performance of the proposed schemes in practical data assimilations15

are needed and should be performed in the future.
The remainder of the paper is organized as follows. Our modified ETKF schemes are

described in Sect. 2. The assimilation results on a Lorenz-96 model with a nonlinear
observation system are presented in Sect. 3. The discussions are given in Sect. 4, and
conclusions are presented in Sect. 5.20

2 Methodology

2.1 ETKF with forecast error inflation

Hunt et al. (2007) gave a comprehensive description of the ETKF with a nonlinear
observation operator, but without procedures for forecast error inflation. In this section,
we propose an inflation scheme to address a general nonlinear observation operator.25
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Using the notations of Ide et al. (1997), a nonlinear discrete-time forecast and obser-
vation system can be written as

xt
i =Mi−1(xa

i−1)+ηi , (1)

yo
i = Hi (x

t
i )+εi , (2)

5

where i is the time step index; x
t
i = {xt

i (1),xt
i (2), . . .,xt

i (n)}T is the n-dimensional
true state vector; x

a
i−1 = {xa

i−1(1),xa
i−1(2), . . .,xa

i−1(n)}T is the n-dimensional analy-

sis state vector, which is an estimate of x
t
i−1; Mi is the nonlinear forecast oper-

ator; y
o
i = {yo

i (1),yo
i (2), . . .,yo

i (pi )}
T is the pi -dimensional observation vector; Hi =

{hi (1),hi (2) · · · ,hi (pi )}
T is the nonlinear observation operator, where hi (k) is a n-10

dimensional multivariate function; and ηi and εi are the forecast and observation er-
ror vectors, which are assumed to be statistically independent of each other, time-
uncorrelated, and to have mean zero and covariance matrices Pi and Ri , respec-
tively. The detailed procedure of the ETKF with a nonlinear observation operator (Hunt
et al., 2007) with the proposed inflation scheme is as follows.15

Step 1. Calculate the j th perturbed forecast state at time i as

xf
i ,j =Mi−1

(
xa
i−1,j

)
, (3)

where x
a
i−1,j is the j th perturbed analysis state at time i −1. Then, the mean forecast

state is defined as20

xf
i =

1
m

m∑
j=1

xf
i ,j , (4)

where m is the total number of ensemble members.
Step 2. Assume the forecast errors to be in the form

√
λi (x

f
i ,j −x

f
i ), (j = 1,2, . . . ,m),

where the inflation factor λi can be estimated by minimizing the objective function25

Li (λ) = Tr
[(

d id
T
i −Ci (λ)− I

)(
d id

T
i −Ci (λ)− I

)T]
. (5)
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Here, I is the m×m identity matrix,

d i = R−1/2
i

(
yo
i −Hi

(
xf
i

))
. (6)

is the innovation vector normalized by the square root of the observation error covari-
ance matrix (Wang and Bishop, 2003), and5

Ci (λ) ≡ 1
m−1

m∑
j=1

[
R−1/2
i

(
Hi
(
xf
i +
√
λ
(
xf
i ,j −xf

i

))
−Hi

(
xf
i

))
(
Hi
(
xf
i +
√
λ
(
xf
i ,j −xf

i

))
−Hi

(
xf
i

))TR−1/2
i

]
. (7)

(See Appendix A for details).
Step 3. Calculate the analysis state as10

xa
i = xf

i +
√
λ̂iX

f
iw

a
i (8)

where

Xf
i =
(
xf
i ,1 −xf

i ,x
f
i ,2 −xf

i , . . .,x
f
i ,m −xf

i

)
(9)

15

and w
a
i is estimated by minimizing the objective function

Ji (w ) =
1
2

(m−1)w Tw +
1
2

[
yo
i −Hi

(
xf
i +
√
λ̂iX

f
iw

)]T
R−1
i

[
yo
i −Hi

(
xf
i +
√
λ̂iX

f
iw

)]
. (10)

Step 4. Calculate a perturbed analysis state as20

xa
i ,j = xa

i +
√
λ̂iX

f
iW

a
i ,j (11)
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where W
a
i ,j is the j th column of the matrix W

a
i =

√
m−1(J̈i |w a

i
)−1/2 and J̈i |w a

i
is the

second-order derivative of Ji (w ) at w a
i (see Appendix B for details). Lastly, set i = i +1

and return to Step 1 for the next iteration.
For estimating the inflation factor, Li et al. (2009) proposed a scheme, for which the

tangent-linear operator of the observation operator (see Sect. 2.2.1 for the definition)5

is required. In the effort to reduce computational cost of searching the minima of the
objective function (Eq. 10), Hunt et al. (2007) suggested the following linear approxi-
mation,

Hi

(
xf
i +
√
λ̂iX

f
iw

)
≈ Hi

(
xf
i

)
+Y

f
iw (12)

10

where

Y
f
i =
(
Hi

(√
λ̂i
(
xf
i ,1 −xf

i

)
+xf

i

)
−Hi

(
xf
i

)
,Hi

(√
λ̂i
(
xf
i ,2 −xf

i

)
+xf

i

)
−Hi

(
xf
i

)
,

. . .,Hi

(√
λ̂i
(
xf
i ,m −xf

i

)
+xf

i

)
−Hi

(
xf
i

))
. (13)

In this study, this traditional ETKF approach is validated against the other approaches.15

2.2 Simplified estimation methods in special cases

To compute the variational minimization in Eq. (10) operationally, one can directly com-
pute the explicit solution of the minima and iterate the process as in the 4D-Var outer
loop (Lorenc, 2003; Liu et al., 2008). However, doing so still requires repeatedly cal-

culating the nonlinear function Hi (x
f
i +
√
λ̂iX

f
iw ) and its tangent-linear operator (see20

Sect. 2.2.1 for the definition) which depend on w and x
f
i . In this subsection, we show

an alternative procedure when the observation operator Hi can be approximated by its
Taylor expansions.
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2.2.1 First-order Taylor approximation for Hi

The first-order Taylor approximation for Hi at the forecast state vector xf
i is defined as

Hi
(
xt
i

)
≈ Hi

(
xf
i

)
+ Ḣi |xf

i

(
xt
i −xf

i

)
, (14)

where5

Ḣi |xf
i
=


∂hi (1)
∂xi (1) · · · ∂hi (1)

∂xi (n)
...

. . .
...

∂hi (pi )
∂xi (1) · · · ∂hi (pi )

∂xi (n)


∣∣∣∣∣∣∣∣
xi=x

f
i

(15)

is the first-order derivative of Hi evaluated at the forecast state x
f
i (tangent-linear oper-

ator). Then, λi can be estimated by minimizing the quadratic function

L1,i (λ) = Tr
[(
d id

T
i − λR−1/2

i Ḣi |xf
i
P̂i Ḣ

T
i |xf

i
R−1/2
i − I

)
10 (

d id
T
i − λR−1/2

i Ḣi |xf
i
P̂i Ḣ

T
i |xf

i
R−1/2
i − I

)T ]
. (16)

The analytic solution is

λ̂i =
Tr
[
R−1/2
i Ḣi |xf

i
P̂i Ḣ

T
i |xf

i
R−1/2
i

(
d id

T
i − I
)T ]

Tr
[
R−1/2
i Ḣi |xf

i
P̂i Ḣ

T
i |xf

i
R−1
i Ḣi |xf

i
P̂i Ḣ

T
i |xf

i
R−1/2
i

] , (17)

15

where

P̂i = Xf
i

(
Xf
i

)T/(m−1). (18)
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Similarly, w a
i can be estimated by minimizing the multivariate quadratic function

J1,i (w ) =
1
2

(m−1)w Tw

+
1
2

[
yo
i −Hi

(
xf
i

)
−
√
λ̂i Ḣi |xf

i
Xf
iw

]T
R−1
i

[
yo
i −Hi

(
xf
i

)
−
√
λ̂i Ḣi |xf

i
Xf
iw

]
(19)

and the analytic solution is5

w a
i =
(
(m−1)I+ λ̂

(
Xf
i

)T Ḣ
T
i |xf

i
R−1
i Ḣi |xf

i
Xf
i

)−1
√
λ̂i
(
Xf
i

)T Ḣ
T
i |xf

i
R−1
i

(
yo
i −Hi

(
xf
i

))
. (20)

(see Appendix C for details).

2.2.2 Second-order Taylor approximation for Hi

The second-order Taylor approximation for Hi at xf
i is defined as10

Hi
(
xt
i

)
≈ Hi

(
xf
i

)
+ Ḣi |xf

i

(
xt
i −xf

i

)
+

1
2

((
xt
i −xf

i

)T ⊗ Ḧi |xf
i
⊗
(
xt
i −xf

i

))
, (21)

where Ḧi |xf
i
≡ {Ḧi |xf

i
(1), . . . , Ḧi |xf

i
(pi )}

T is the second-order derivative of Hi at xf
i ,

Ḧi |xf
i
(k) ≡


∂2hi (k)

∂xi (1)∂xi (1) · · · ∂2hi (k)
∂xi (1)∂xi (n)

...
. . .

...
∂2hi (k)

∂xi (n)∂xi (1) · · · ∂2hi (k)
∂xi (n)∂xi (n)


∣∣∣∣∣∣∣∣∣
xi=x

f
i

k = 1, . . . ,pi , (22)

15

and ⊗ is the outer product operator, i.e., for two arbitrary n-dimensional vectors x and
y,

xT ⊗ Ḧi |xf
i
⊗y = {xT Ḧi |xf

i
(1)y, . . . ,xT Ḧi |xf

i
(pi )y}

T , (23)
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is a pi -dimensional vector. Then, λi can be estimated by minimizing the polynomial

objective function of λ1/2

L2,i (λ) = Tr
[(
d id

T
i − λR−1/2

i Ḣi |xf
i
P̂i Ḣ

T
i |xf

i
R−1/2
i − λ3/2C1,i − λ3/2CT

1,i − λ2C2,i − I
)

(
d id

T
i − λR−1/2

i Ḣi |xf
i
P̂i Ḣ

T
i |xf

i
R−1/2
i − λ3/2C1,i − λ3/2CT

1,i − λ2C2,i − I
)T ]

, (24)
5

where

C1,i =
1

2(m−1)

m∑
j=1

[
R−1/2
i Ḣi |xf

i

√
λi
(
xf
i ,j −xf

i

)
((

xf
i ,j −xf

i

)T ⊗ Ḧi |xf
i
⊗
(
xf
i ,j −xf

i

))T
R−1/2
i

]
, (25)

and10

C2,i =
1

4(m−1)

m∑
j=1

[
R−1/2
i

((
xf
i ,j −xf

i

)T ⊗ Ḧi |xf
i
⊗
(
xf
i ,j −xf

i

))
((

xf
i ,j −xf

i

)T ⊗ Ḧi |xf
i
⊗
(
xf
i ,j −xf

i

))T
R−1/2
i

]
. (26)

Moreover, w a
i can be estimated by minimizing the multivariate polynomial objective

function15

J2,i (w ) ≈ 1
2

(m−1)w Tw

+
1
2

[
yo
i −Hi

(
xf
i

)
−
√
λ̂i Ḣi |xf

i
Xf
iw −

λ̂i
2

((
Xf
iw
)T ⊗ Ḧi |xf

i
⊗
(
Xf
iw
))]T

R−1
i

[
yo
i −Hi

(
xf
i

)
−
√
λ̂i Ḣi |xf

i
Xf
iw −

λ̂i
2

((
Xf
iw
)T ⊗ Ḧi |xf

i
⊗
(
Xf
iw
))]

(27)
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(see Appendix D for details).

2.3 Validation statistics

In the following experiments, the “true” state x
t
i is known by experimental design and is

non-dimensional. In this case, we can use the Root Mean Square Error of the Analysis
state (A-RMSE) to evaluate the accuracy of the assimilation results. The A-RMSE at5

the i th step is defined as

A-RMSE =

√
1
n
‖xa

i −xt
i ‖2, (28)

where ‖ · ‖ denotes the Euclidean norm and n is the dimension of the state vector.
A smaller A-RMSE indicates a better performance of the assimilation scheme.10

Following Anderson (2007) and Liang et al. (2012), the Root Mean Square Error of
the Forecast state (F-RMSE) and the Spread of the Forecast state (F-Spread) at the
i th step are defined as

F-RMSE =

√
1
n
‖xf

i −xt
i ‖2. (29)

15

and

F-Spread =

√√√√ 1
n(m−1)

m∑
j=1

‖xf
i ,j −xf

i ‖2. (30)

Roughly speaking, if xf
i ,j and x

t
i are identically distributed with a mean value of xf

i ,
then F-RMSE and F-Spread should be consistent with each other. This is more likely20

the case if the model error is small. In general, the F-RMSE can be decomposed into
an F-Spread component and a model error component, so it is larger than F-Spread
(see Appendix B of Wu et al. (2013) for a detailed proof).
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3 Experiments with the Lorenz-96 model

In Sect. 2.1, we outlined the general ETKF assimilation scheme with Second-order
Least Squares (SLS) error covariance matrix inflation. In Sect. 2.2, we proposed sim-
plified estimation methods for two special cases: when Hi is tangent-linear (Sect. 2.2.1)
and when Hi can be approximated by the second-order Taylor expansion (Sect. 2.2.2).5

In this section, we apply these assimilation schemes to the Lorenz-96 model (Lorenz,
1996) with model errors and a nonlinear observation system because it is a nonlinear
dynamical system with properties relevant to realistic forecast problems.

3.1 Description of the dynamic and observation system

The Lorenz-96 model (Lorenz, 1996) is a strongly nonlinear dynamical system with10

quadratic nonlinearity governed by the equation

dXk

dt
= (Xk+1 −Xk−2)Xk−1 −Xk + F , (31)

where k = 1,2, . . . ,K (K = 40, so there are 40 variables). We apply the cyclic boundary
conditions X−1 = XK−1,X0 = XK ,XK+1 = X1. The dynamics of Eq. (31) are “atmosphere-15

like” in that the three terms on the right-hand side consist of a nonlinear advection-like
term, a damping term and an external forcing term, respectively. These terms can
be thought of as a given atmospheric quantity (e.g., zonal wind speed) distributed on
a latitude circle.

We solve Eq. (31) using the fourth-order Runge–Kutta time integration scheme20

(Butcher, 2003) with a time step of 0.05 non-dimensional units to derive the true state.
This is roughly equivalent to 6 h in real time, assuming that the characteristic time-
scale of the dissipation in the atmosphere is 5 days (Lorenz, 1996). In our assimila-
tion schemes, we set F = 8 so that the leading Lyapunov exponent implies an error-
doubling time of approximately 8 time steps (i.e., 0.4 non-dimensional time units) and25
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the fractal dimension of the attractor is 27.1 (Lorenz and Emanuel, 1998). The initial
condition is chosen to be Xk = F when k 6= 20 and X20 = 1.001F .

Because the microwave brightness temperature is an exponential function of soil
temperature, we use the exponential observation function to mimic the radiative transfer
model in this study. Suppose the synthetic observation generated at the kth model grid5

point is

yo
i (k) = xt

i (k)exp{αxt
i (k)}+εi (k), (32)

where k = 1, . . . ,pi , and εi = {εi (1),εi (2), . . . ,εi (pi )}
T is the observation error vector

with a mean of zero and covariance matrix Ri . Here, α is a parameter controlling the10

nonlinearity of the observation operator, and α = 0 corresponds to the linear case. All
the 40 model variables are observed in our experiments. Suppose the observation
errors are spatially correlated. The leading-diagonal elements of Ri are σ2

o = 1, and the
off-diagonal elements at site pair (j , k) are

Ri (j ,k) = σ2
o ×0.5min(|j−k |,40−|j−k |), (33)15

With the exponential observation function and spatially correlated observation errors,
the proposed scheme may potentially be applied to assimilate remote sensing obser-
vations and radiance data.

We added model errors in the Lorenz-96 model because they are inevitable in real20

dynamic systems. The model is a forced dissipative model with a parameter F that con-
trols the strength of the forcing (Eq. 31). It behaves quite differently, with different values
of F , and it produces chaotic systems with integer values of F larger than 3. Thus, we
used various values of F to simulate a wide range of model errors while retaining F = 8
when generating the “true” state. These observations were then assimilated with F = 4,25

5, . . . , 12. We simulated observations every 4 time steps for 100 000 steps to ensure
robust results (Sakov and Oke, 2008; Oke et al., 2009). The ensemble size is 30.
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3.2 Assimilation results

In this section, we examine the following five data assimilation methods corresponding
to five different treatments of nonlinearity in inflation factor estimation and optimization:

ETKF: Traditional ETKF described in the last paragraph of Sect. 2.1.
TT: Tangent-linear approximation in both inflation (Eq. 17) and optimization (Eq. 20)5

TN: Tangent-linear approximation in inflation (Eq. 17) and nonlinearity in optimization
(Eq. 10)

SS: Second-order approximation in both inflation (Eq. 24) and optimization (Eq. 27)
NN: Nonlinearity in both inflation (Eq. 5) and optimization (Eq. 10).
The corresponding time-mean A-RMSEs of these assimilation schemes with α = 0.110

and F = 4, 5, . . . , 12, over 100 000 time steps are plotted in Fig. 1. First, the figure
clearly shows that for each estimation method, the A-RMSE increases as F becomes
increasingly distant from the true value of 8.

Moreover, method NN has a smaller A-RMSE uniformly over all values of F than
method TN, indicating that the proposed nonlinear inflation estimation (Eq. 5) per-15

forms better than the tangent-linear inflation scheme (Eq. 17). On the other hand, the
A-RMSEs of methods SS and TN are close and smaller than that of method TT, sug-
gesting that the second-order Taylor approximation method is comparable to the partial
nonlinear method and is better than the first-order Taylor approximation method. Lastly,
the traditional ETKF method has the largest A-RMSE, which implies that although the20

linear approximation is computationally more efficient, it may introduce larger analysis
error.

For the Lorenz-96 model with large error (F = 12), the time-mean A-RMSEs and F-
RMSEs of the five methods are given in Table 1 as well as the time-mean values of
the objective functions. It can be seen that the full nonlinear method (NN) has both25

the smallest A-RMSE and F-RMSE, while the traditional linear approximation method
(ETKF) has the largest RMSEs. The second-order Taylor approximation method (SS)
performs similarly to the partial nonlinear method (TN), but better than the first-order
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Taylor approximation method (TT). In all cases, a smaller error corresponds to a smaller
value of the objective function L.

To investigate the consistency between F-RMSE and F-Spread, we present the time-
mean values of the five methods for cases F = 12 and F = 8 in Tables 2 and 3, respec-
tively, as well as the ratios of F-RMSE over F-Spread. It is easy to see that in all cases,5

the F-RMSEs are larger than F-Spreads, and therefore, all ratios are greater than 1.
However, the ratio of the full nonlinear method (NN) is the smallest, while the ratio of
the linear approximation method is the largest. The ratio of the second-order approx-
imation method (SS) is comparable to that of the partial nonlinear method (TN), but
smaller than that of the first-order approximation method (TT). This suggests that the10

ensemble perturbed predictions are the most (least) reasonable for method NN (ETKF).
Moreover, the ratios with F = 8 are much closer to 1 than those with F = 12 because
the model error with F = 12 is much larger than that with F = 8 (see Sect. 2.3).

3.3 Impacts of Taylor approximations

In Sect. 3.2, we see that the A-RMSEs derived from the five ETKF assimilation15

schemes are close when F is close to the true value of 8 but are different when F
departs from 8. This effect may depend on how well the Taylor expansions approxi-
mate the nonlinear observation operator Hi .

For example, the Taylor expansion of the kth component of observation operator
Hi (x) = xexp{αx} (Eq. 32) with α = 0.1 around the forecast state xf

i (k) is20

xt
i (k)exp{0.1xt

i (k)} = xf
i (k)exp{0.1xf

i (k)}
+
(
1+0.1xf

i (k)
)

exp{0.1xf
i (k)}

(
xt
i (k)−xf

i (k)
)

+
(
0.2+0.01xf

i (k)
)

exp{0.1xf
i (k)}

(
xt
i (k)−xf

i (k)
)2 + · · · . (34)

To verify how well the Taylor expansions approximate the nonlinear observa-25

tion operator Hi , we calculate the ratios of the Taylor expansion residuals over
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xt
i (k)exp{0.1xt

i (k)}. If a ratio falls outside the interval [−0.1, 0.1], then the correspond-
ing residual cannot be regarded as being of a higher order infinitesimal and, therefore,
cannot be ignored. Therefore, a larger proportion of the ratios falling outside the interval
[−0.1, 0.1] indicates a worse Taylor expansion and vice versa.

The proportions of the ratios that fall outside the interval [−0.1, 0.1] are plotted5

in Fig. 2, which shows that when F = 8, the proportions are 0.0169 and 0.0006 for
the first-order and second-order Taylor expansions, respectively. This result indicates
that at almost all times and locations, both the first-order and second-order Taylor ex-
pansions are good approximations of xt

i (k)exp{0.1xt
i (k)}. However, when F = 12, at

approximately 47 % (19 %) of the times and locations, xt
i (k)exp{0.1xt

i (k)} cannot be10

adequately approximated by its first (second) order Taylor expansion. Therefore, the
A-RMSEs derived by the five ETKF schemes are quite different. This example also
indicates that the success of the Taylor approximation method depends on both the
smoothness of Hi and the range of forecast states. It seems that for the same strongly
nonlinear observation operator, the larger the model error, the less success of the Tay-15

lor approximation.

4 Discussions

4.1 Inflation

It is widely recognized that the initial estimates of ensemble forecast errors should be
inflated to improve assimilated results. To date, however, all of the existing adaptive20

inflation schemes in ETKF are based on the assumption that the observation operator
is linear or tangent-linear (e.g., Li et al., 2009; Miyoshi, 2011). In this study, a method
to estimate the multiplicative inflation factors is proposed for general nonlinear obser-
vation operators.

Historically, in systems such as the Met Office ETKF (Flowerdew and Bowler, 2011),25

the need for inflation arises primarily due to spurious correlations that cause the raw
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analysis ensemble to be severely under-spread even when the background ensemble
is well-spread. In this case, therefore, inflation must be applied to the analysis ensem-
ble to correctly respond to the actual analysis uncertainty in the nonlinear forecast step.
Inflation of the background ensemble may be more appropriate when the inflation pri-
marily represents forecast model error, although stochastic physics or additive inflation5

may be more appropriate in this case (Hamill and Whitaker, 2005; Wu et al., 2013).
Our choice to inflate the background ensemble is crucial to the ability of finding a di-

rect nonlinear solution for Eqs. (5)–(7) because of the way the inflation factor appears in
these equations. Our objective function for estimating the multiplicative inflation factors
is the second-order distance between the expectations of the squared innovation and10

its realization, which also makes the rms spread equal to the rms error (e.g., Palmer
et al., 2006; Wang and Bishop, 2003; Flowerdew and Bowler, 2011).

The proposed nonlinear method is tested using the Lorenz-96 model with nonlinear
observation systems (Sect. 3.2). The resulting A-RMSEs are clearly smaller than those
of the first-order Taylor approximation in the estimation of the inflation factor. This in-15

dicates that the proposed full nonlinear inflation method is better than the first-order
Taylor approximation inflation method in the case of nonlinear observation operators
(i.e., method NN is better than method TN). In addition, the F-RMSE and the F-Spread
of the proposed nonlinear method are more consistent than those of the first-order
Taylor approximation method.20

The proposed inflation method works well in the case where observation errors are
spatially correlated. Some data assimilation schemes assume the observation error
covariance matrix to be diagonal for simplicity and ease of computation (e.g., Ander-
son, 2007, 2009). However, because satellite observations often contain significantly
correlated errors, the observation error covariance matrix has nonzero off-diagonal en-25

tries (Miyoshi et al., 2013). The inflation method proposed in this study can be applied
to assimilate such observations.

In many practical experiments, the inflation factor is constant in time and is chosen by
trial and error to give the assimilation with the most favourable statistics (e.g. Anderson
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and Anderson, 1999). For testing the empirical tuning method, the most accurate ap-
proach (i.e. estimate the minima of the objective function, Eq. 10), and the statistics root
mean square errors of analysis-minus-observation and forecast minus-observation are
used to tune the inflation factor. The A-RMSEs are estimated as 2.97 and 2.85 re-
spectively which are larger than that of method SS (2.29). The ratios of F-RMSE to5

F-Spread are estimated as 3.14 and 3.45 respectively, which are also larger than that
of method SS (1.80). All these facts indicate than the empirical estimation method for
the inflation factor is not as good as our proposed method in this experimentation.

4.2 Second-order Taylor approximation

In Sect. 3.2, we showed that the ETKF scheme equipped with our proposed nonlin-10

ear inflation method leads to the smallest A-RMSE in all ETKF schemes analysed in
this study. However, this ETKF scheme requires repeated calculation of the nonlinear

observation functions Hi (x
f
i +

√
λ(xf

i ,j −x
f
i )) and Hi (x

f
i +
√
λ̂iX

f
iw ) when minimizing the

objective functions Li (λ) and Ji (w ), which can be computationally expensive. To reduce
the computational cost, a commonly used approach is to substitute Hi by its tangent-15

linear operator (i.e., first-order Taylor expansion). However, this approach comes at the
cost of losing estimation quality, as we have shown in this study.

As an effort to strike a balance between the estimation quality and computational
cost, the nonlinear observation operator Hi in the objective functions Li (λ) and Ji (w )
is substituted by its second-order Taylor expansion. This is because (1) the second-20

order Taylor expansion is a better approximation of Hi than its tangent-linear operator;
(2) with second-order Taylor expansion, the inflation factor λ and the weight vector
w are concentrated out of Hi , so the objective functions (Eqs. 24 and 27) become
polynomials, for which a minima is easier to derive; and (3) the second-order derivative
of Hi is required for estimating ensemble analysis states (Eq. 11) in the ETKF scheme,25

so its computation is not an additional task.
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The accuracy of the ETKF scheme with the second-order Taylor approximation is
examined in Sect. 3.2. The results suggest that the scheme is more accurate than the
ETKF scheme based on the first-order Taylor approximation and is comparable with
the scheme based on nonlinear optimization and tangent-linear multiplicative inflation.
However, it is less accurate than the nonlinear optimization and nonlinear inflation es-5

timation ETKF scheme proposed in this study. On the other hand, both schemes have
similar F-RMSE over F-Spread ratios.

Despite the advantage that the objective functions (Eqs. 24 and 27) are easier to min-
imize, the computational cost of the ETKF with the second-order Taylor approximation
may increase from computing (Xf

iw )T Ḧi |xf
i ,k

Xf
iw . Because the most typical nonlinear10

observation operator in numerical weather prediction is the radiative transfer model RT-
TOV, the related computational issue is discussed and is documented in Appendix E.
In fact, unlike forecast operators, the observation operators are usually localized, and
therefore, the computation of (Xf

iw )T Ḧi |xf
i ,k

Xf
iw is still feasible.

In additional, there are other ways to address this problem. For example, in the deter-15

ministic variational framework, Met Office re-linearizes the observation operator every
10 iterations (Rawlins et al., 2007), and ECMWF uses a nonlinear outer loop. Both ap-
proaches retain the efficiency of a tangent-linear approximation in the inner loop, while
allowing for nonlinearity at a higher level. To better understand the efficacy of the ETKF
scheme with second-order Taylor approximation, a more careful comparison with alter-20

native assimilation schemes is necessary. We plan to face this challenge in the near
future.

4.3 Caveats

This study assumes the inflation factor to be constant in space, but this is apparently
not the case in many practical applications, specifically when observations are sparse.25

Applying the same inflation value to all state variables may overinflate the forecast er-
rors of the state variables without observations (Hamill and Whitaker, 2005; Anderson,
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2009; Miyoshi et al., 2010; Miyoshi and Kunii, 2012). If the forecast model has a large
error, a multiplicative inflation may not be effective enough to improve the assimilation
results. In this case, the additive inflation and localization technique may be applied to
further improve the assimilation quality (Wu et al., 2013).

This study also assumes that the analysis increment can be expressed as a linear5

combination of ensemble forecast errors (Eq. 8). This assumption is true if the ob-
servation operator is tangent-linear, but the nonlinear observation operator can affect
the combination of possible increments that produce the optimal analysis (Yang et al.,
2012). However, our examples demonstrate that the proposed ETKF methods can still
work well when the observation operators are not tangent-linear.10

At the last, but not the least, the results concluded in this study are related to the
Lorenz-96 experiment. It may not be regarded as general rules. However, they can
serve as counter examples to validate some ideas.

5 Conclusions

In this study, a new approach to inflating the ensemble forecast errors is proposed for15

the ETKF with a nonlinear observation operator. For an idealized model, it is shown that
the proposed inflation approach can reduce analysis error compared with the tangent-
linear multiplicative inflation, despite it being computationally more expensive. An ETKF
scheme with the second-order Taylor approximation is also proposed. In terms of anal-
ysis error, the scheme is better than the first-order Taylor approximation ETKF scheme20

and traditional ETKF scheme, specifically when the model error is larger. However, it
is comparable to the scheme based on nonlinear optimization and tangent-linear multi-
plicative inflation. Finally, the proposed ETKF scheme with nonlinear optimization and
nonlinear inflation was found to be the best among all of the schemes presented in this
study.25
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In the future studies, we plan to further investigate the computational efficiency of
the proposed ETKF schemes and to validate them using more sophisticated dynamic
models and observation systems.

Appendix A

Derivation of Eq. (6)5

The estimation of the inflation factors λ is based on the innovation statistic normalized
by the square root of the observation error covariance matrix

d i = R−1/2
i

(
yo
i −Hi

(
xf
i

))
= R−1/2

i

(
yo
i −Hi

(
xt
i

))
+R−1/2

i

(
Hi
(
xt
i

)
−Hi

(
xf
i

))
, (A1)

10

where y
o
i , xf

i and x
t
i are the observation, forecast and true state vector at the i th time

step, respectively, and Hi is the observation operator. The covariance matrix of the
random vector d i can be expressed as a second-order regression equation (Wang
and Leblanc, 2008):

d id
T
i = E

[(
R−1/2
i

(
yo
i −Hi

(
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i

))
+R−1/2

i

(
Hi
(
xt
i

)
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(
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)))
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i

(
yo
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(
xt
i

))
+R−1/2

i

(
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(
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i

)
−Hi

(
xf
i

)))T ]+Ξ, (A2)

where E is the expectation operator and Ξ is a zero-mean error matrix. The expectation
in Eq. (A2) has the decomposition

E
[(

R−1/2
i

(
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i −Hi

(
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i
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(
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Assuming the forecast and observation errors are statistically independent, we have

E
[
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From Eq. (2), yo
i −Hi (x

t
i ) is the observation error at the i th time step, and hence,

E
[
R−1/2
i

(
yo
i −Hi

(
xt
i

))(
yo
i −Hi

(
xt
i

))TR−1/2
i

]
= R−1/2
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(
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(
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= R−1/2
i RiR

−1/2
i15

= I. (A6)

In a perfect system, truth would be statistically indistinguishable from one of the ensem-
ble forecast states, but in a real system this is not guaranteed. Hence, we use an infla-
tion factor to adjust the ensemble forecast states x

f
i ,j to x

f
i +

√
λ(xf

i ,j −x
f
i ), (j = 1, . . . ,m).20
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Because the ensemble forecast states may be regarded as sample points of xt
i (An-

derson, 2007), we have
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(
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i
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i

]
5

≡ Ci (λ). (A7)

Substituting Eqs. (A3)–(A7) into Eq. (A2), we have

d id
T
i = Ci (λ)+ I+Ξ. (A8)

10

It follows that the second-order moment statistic of error Ξ can be expressed as

Tr
[
ΞΞT
]
= Tr

[(
d id

T
i −Ci (λ)− I

)(
d id

T
i −Ci (λ)− I

)T ]
≡ Li (λ). (A9)

Appendix B15

Derivation of J̇i|w and J̈i|w

The first-order derivative of the objective function Ji (w ) (Eq. 10) is

J̇i (w ) = (m−1)w −
√
λ̂i
(
Xf
i

)T Ḣ
T

i |xf
i +
√
λ̂iX

f
i w
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f
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, (B1)
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where

Ḣ
i |xf

i +
√
λ̂iX

f
i w

=
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is the first-order derivative of Hi evaluated at xf
i +
√
λ̂iX

f
iw . Then, the second-order

derivative of Ji (w ) is5
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i |xf
i +
√
λ̂iX

f
i w

Xf
i − λ̂iA, (B3)

where A is an m×m matrix with the (k, l ) entry((
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The notation “⊗” denotes an outer product operator of the block matrix defined in

Eq. (23). Ḧ
i |xf

i +
√
λ̂iX

f
i w

is the second-order derivative of Hi at xf
i +
√
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f
iw , that is,
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15
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Appendix C

Details of the first-order approximation method in Sect. 2.2.1

Suppose Hi can be approximated by its first-order Taylor expansion at xf
i ,
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The term Ci (λ) in Eq. (6) can be simplified to
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Ḣi |xf

i

√
λ
(
xf
i ,j −xf

i

))T
R−1/2
i

]

= λR−1/2
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i Ḣi |xf

i
P̂i Ḣ
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It follows that the objective function Li (λ) of Eq. (5) can be simplified to
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T
i |xf

i
R−1/2
i − I

)T ]
. (C2)15

568

http://www.nonlin-processes-geophys-discuss.net
http://www.nonlin-processes-geophys-discuss.net/1/543/2014/npgd-1-543-2014-print.pdf
http://www.nonlin-processes-geophys-discuss.net/1/543/2014/npgd-1-543-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/


NPGD
1, 543–582, 2014

Improving ETKF
using the

second-order
information

G. Wu et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Because L1,i (λ) is a quadratic function of λ with positive quadratic coefficients, the
inflation factor can be easily expressed as
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Similarly,5
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i
Xf
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Substituting Eq. (C3) into Eq. (8), we can simplify the objective function Ji (w ) to
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1
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The first-order derivative of J1,i (w ) is
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15

Setting Eq. (C6) to zero and solving it leads to

w a
i =
(
(m−1)I+ λ̂Xf

i
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T
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Lastly, the second-order derivative of J1,i (w ) is

J̈1,i (w ) = (m−1)I+ λ̂iX
f
i
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T
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i
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Appendix D

Details of the second-order approximation method in Sect. 2.2.2

Suppose Hi can be approximated by its second-order Taylor expansion at xf
i ,
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The notation “⊗” is defined as in Eq. (23). The term Ci (λ) in Eq. (7) can be simplified to

Ci (λ) ≡ 1
m−1

m∑
j=1

[
R−1/2
i

(
Hi

(
xf
i +
√
λ
(
xf
i ,j −xf

i

))
−Hi

(
xf
i

))
(
Hi

(
xf
i +
√
λ
(
xf
i ,j −xf

i

))
−Hi

(
xf
i

))T
R−1/2
i

]
=

1
m−1

m∑
j=1

[
R−1/2
i

(
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are pi ×pi matrices, which are independent of λ.
It follows that the objective function Li (λ) of Eq. (5) can be expressed as

L2,i (λ) = Tr
[(
d id

T
i − λR−1/2

i Ḣi |xf
i
P̂i Ḣ

T
i |xf

i
R−1/2
i − λ3/2C1,i − λ3/2CT

1,i − λ2C2,i − I
)

·
(
d id

T
i − λR−1/2

i Ḣi |xf
i
P̂i Ḣ

T
i |xf

i
R−1/2
i − λ3/2C1,i − λ3/2CT

1,i − λ2C2,i − I
)T ]

, (D5)15

which is a fourth-order algebraic equation of the inflation factor λ. Similarly,

Hi (x
f
i +
√
λ̂iX

f
iw ) ≈ Hi

(
xf
i

)
+ Ḣi |xf

i

√
λ̂iX

f
iw +

1
2

((√
λ̂iX

f
iw

)T
⊗ Ḧi |xf

i
⊗
(√

λ̂iX
f
iw

))
.

(D6)
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Substituting Eq. (D6) into Eq. (10), we can simplify the objective function Ji (w ) to

J2,i (w ) =
1
2

(m−1)w Tw

+
1
2

[
yo
i −Hi

(
xf
i

)
−
√
λ̂i Ḣi |xf

i
Xf
iw −

λ̂i
2

((
Xf
iw
)T ⊗ Ḧi |xf

i
⊗
(
Xf
iw
))]T

R−1
i

[
yo
i −Hi

(
xf
i

)
−
√
λ̂i Ḣi |xf

i
Xf
iw −

λ̂i
2

((
Xf
iw
)T ⊗ Ḧi |xf

i
⊗
(
Xf
iw
))]

. (D7)
5

The first-order derivative of J2,i (w ) is

J̇2,i (w ) = (m−1)w −
[√

λ̂i Ḣi |xf
i
Xf
i + λ̂iB1

]T
R−1
i

[
yo
i −Hi

(
xf
i

)
−
√
λ̂i Ḣi |xf

i
Xf
iw −

λ̂i
2

((
Xf
iw
)T ⊗ Ḧi |xf

i
⊗
(
Xf
iw
))]

, (D8)

where B1 is a pi ×m matrix with the (k, l ) entry Xf
i ,l

T Ḧi |xf
i ,k

Xf
iw .10

The second-order derivative of J2,i (w ) is

J̈2,i (w ) = (m−1)I+
[√

λ̂i Ḣi |xf
i
Xf
i + λ̂iB1

]T
R−1
i

[√
λ̂i Ḣi |xf

i
Xf
i + λ̂iB1

]
− λ̂iB2. (D9)

where B2 is an m×m matrix with the (k, l ) entry((
xf
i ,k −xf

i

)T ⊗ Ḧi |xf
i
⊗
(
xf
i ,l −xf

i

))T
15

R−1
i

[
yo
i −Hi

(
xf
i

)
−
√
λ̂i Ḣi |xf

i
Xf
iw −

λ̂i
2

((
Xf
iw
)T ⊗ Ḧi |xf

i
⊗
(
Xf
iw
))]

.
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Appendix E

Computational feasibility

We take the radiative transfer model (RTTOV) as an example of observation oper-
ators in numerical weather prediction to discuss the computational feasibility of the
ETKF with second-order approximation assimilation method. Generally speaking, the5

ensemble size m is from tens to hundreds, the dimension of observations (including
gauge observations and AMSU brightness temperature) pi is hundreds of thousands,
and the dimension of state vector n is tens of millions. If the storage and the number
of multiplications for computing any array are not in the dimension of n×n, n×pi or
pi ×pi , the computation should be feasible.10

In our proposed ETKF with second-order approximation, the most expensive part is
in computing the array(
Xf
iw
)T ⊗ Ḧi |xf

i
⊗
(
Xf
iw
)
=
{(

Xf
iw
)T Ḧi |xf

i ,1
Xf
iw , . . . ,

(
Xf
iw
)T Ḧi |xf

i ,pi
Xf
iw
}

. (E1)

Therefore, we only discuss the problems related to the computation of15

(Xf
iw )T Ḧi |xf

i ,k
Xf
iw .

E1 Storage problems

By the matrix multiplication rule,(
Xf
iw
)T Ḧi |xf

i ,k
Xf
iw =w T

((
Xf
i

)T Ḧi |xf
i ,k

Xf
i

)
w , (E2)

20

where the matrix in the middle of the right hand-side of Eq. (E2)(
Xf
i

)T Ḧi |xf
i ,k

Xf
i (E3)

is of dimension m×m, because subscript k runs from 1 to pi , the size of the array in
Eq. (E1) is m×m×pi . Therefore, there is no storage problem to save this array.25
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E2 The computational cost of Eq. (E3)

Usually, mn(m+n) times multiplication are required to compute a matrix such as the
one in Eq. (E3). However, in the case of the RTTOV observation operator, Ḧi |xf

i ,k
is

a sparse matrix with a large number of zeros and the non-zero part has a simple
regular structure. This is because an MSU brightness temperature measurement on5

a grid point (denoted by yo
i (k)) is only related to the meteorological state variables

on the transmission route. Suppose the meteorological model has 50 layers and 6
types of variables, the number of state variables on the transmission route of the MSU
brightness temperature yo

i (k) is approximately s = 300. For the variables not on the
transmission route, the corresponding entries in Ḧi |xf

i
(k) (Eq. 22) are zero. Therefore,10

the computation of Eq. (E3) only requires ms(m+ s)/2 times of multiplication, which is
clearly feasible.
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Table 1. The time-mean values of A-RMSE, F-RMSE and objective function (second-order dis-
tance of the squared innovation statistic to its expectation, Eq. 5) in the five ETKF schemes for
Lorenz-96 model with forcing parameter F = 12 and parameter of observation operator α = 0.1.
ETKF: Traditional ETKF described in the last paragraph of Sect. 2.1; TT: tangent-linear approx-
imation in both inflation (Eq. 17) and optimization (Eq. 20); TN: tangent-linear approximation in
inflation (Eq. 17) and nonlinearity in optimization (Eq. 10); SS: second-order Taylor approxima-
tion in both inflation (Eq. 24) and optimization (Eq. 27); NN: nonlinearity in both inflation (Eq. 5)
and optimization (Eq. 10).

Scheme ETKF TT TN SS NN

A-RMSE 2.74 2.50 2.25 2.29 2.08
F-RMSE 3.20 3.00 2.77 2.66 2.52
L 49 700 074 17 078 480 8 768 825 9 177 962 8 458 902
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Table 2. The time-mean values of F-RMSE, F-Spread and the ratio of F-RMSE over F-Spread
in the four ETKF schemes for Lorenz-96 model with forcing parameter F = 12 and parameter
of observation operator α = 0.1.

Scheme ETKF TT TN SS NN

F-RMSE 3.20 3.00 2.77 2.66 2.52
F-Spread 1.06 1.45 1.46 1.48 1.45
F-RMSE/F-Spread 3.02 2.07 1.90 1.80 1.74
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Table 3. Similar to Table 2, but with F = 8.

Scheme ETKF TT TN SS NN

F-RMSE 0.30 0.29 0.26 0.27 0.23
F-Spread 0.20 0.22 0.21 0.22 0.21
F-RMSE/F-Spread 1.50 1.32 1.24 1.18 1.09
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 1 

 2 

Fig. 1. Time-mean values of the A-RMSE as a function of forcing F for different 3 

assimilation methods on Lorenz-96 model. ETKF: Traditional ETKF described in the 4 

last paragraph of section 2.1; TT: Tangent-linear approximation in both inflation (Eq 5 

(17)) and optimization (Eq. (20)) (thin solid line); TN: Tangent-linear approximation 6 

in inflation (Eq (17)) and nonlinearity in optimization (Eq. (10)) (dashed line); SS: 7 

Second-order Taylor approximation in both inflation (Eq. (24)) and optimization (Eq. 8 

(27)) (dotted line); NN: Nonlinearity in both inflation (Eq. (5)) and optimization (Eq. 9 

(10)) (thick solid line) The ensemble size is 30.  10 

Fig. 1. Time-mean values of the A-RMSE as a function of forcing F for different assimila-
tion methods on Lorenz-96 model. ETKF: traditional ETKF described in the last paragraph of
Sect. 2.1; TT: tangent-linear approximation in both inflation (Eq. 17) and optimization (Eq. 20)
(thin solid line); TN: tangent-linear approximation in inflation (Eq. 17) and nonlinearity in opti-
mization (Eq. 10) (dashed line); SS: second-order Taylor approximation in both inflation (Eq. 24)
and optimization (Eq. 27) (dotted line); NN: nonlinearity in both inflation (Eq. 5) and optimization
(Eq. 10) (thick solid line) The ensemble size is 30.
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Fig. 2. The proportions of residual ratios of the first-order (dashed line) and 2 

second-order (solid line) Taylor expansions over the nonlinear observation operator 3 

 t t

, ,exp 0.1i k i kx x  that fall outside the interval [-0.1, 0.1], as a function of forcing F. 4 

 5 

 6 

Fig. 2. The proportions of residual ratios of the first-order and second-order Taylor expansions
over the nonlinear observation operator xt

i ,k exp{0.1xt
i ,k} that fall outside the interval [−0.1, 0.1],

as a function of forcing F .
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